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Loss of tricellular tight junction tricellulin leads to
hyposalivation in Sjögren’s syndrome
Xiangdi Mao 1, Haibing Li1, Sainan Min2, Jiazeng Su2, Pan Wei3, Yan Zhang1, Qihua He4, Liling Wu1, Guangyan Yu2 and Xin Cong1,2✉

Tricellulin, a key tricellular tight junction (TJ) protein, is essential for maintaining the barrier integrity of acinar epithelia against
macromolecular passage in salivary glands. This study aims to explore the role and regulatory mechanism of tricellulin in the
development of salivary gland hypofunction in Sjögren’s syndrome (SS). Employing a multifaceted approach involving patient
biopsies, non-obese diabetic (NOD) mice as a SS model, salivary gland acinar cell-specific tricellulin conditional knockout (TricCKO)
mice, and IFN-γ-stimulated salivary gland epithelial cells, we investigated the role of tricellulin in SS-related hyposalivation. Our data
revealed diminished levels of tricellulin in salivary glands of SS patients. Similarly, NOD mice displayed a reduction in tricellulin
expression from the onset of the disease, concomitant with hyposecretion and an increase in salivary albumin content. Consistent
with these findings, TricCKO mice exhibited both hyposecretion and leakage of macromolecular tracers when compared to control
animals. Mechanistically, the JAK/STAT1/miR-145 axis was identified as mediating the IFN-γ-induced downregulation of tricellulin.
Treatment with AT1001, a TJ sealer, ameliorated epithelial barrier dysfunction, restored tricellulin expression, and consequently
alleviated hyposalivation in NOD mice. Importantly, treatment with miR-145 antagomir to specifically recover the expression of
tricellulin in NOD mice significantly alleviated hyposalivation and macromolecular leakage. Collectively, we identified that tricellulin
deficiency in salivary glands contributed to hyposalivation in SS. Our findings highlight tricellulin as a potential therapeutic target
for hyposecretion, particularly in the context of reinforcing epithelial barrier function through preventing leakage of
macromolecules in salivary glands.
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INTRODUCTION
Material transport across epithelial cells in exocrine glands occurs
via two primary routes: the transcellular pathway, mediated by
transporters, and the paracellular pathway, governed by tight
junctions (TJs).1,2 TJs are localized at the apicolateral membranes
of adjacent polarized cells and consist of transmembrane proteins,
including claudins, occludin, and junctional adhesion molecules
(JAMs), as well as cytoplasmic proteins, such as ZO proteins and
cingulin.3,4 Over the past two decades, significant research efforts
have been directed toward the identification of tricellular TJs
(tTJs). Tricellulin, encoded by MARVELD2 (also known as TRIC)
gene, was the first tTJ protein to be identified.5 At the tripartite cell
junction, tricellulin constructs a ~10 nm “central tube” through a
vertically orientated triple-pair strand structure, thereby forming a
barrier that predominantly restricts the passage of macromole-
cules—a function distinct from that of bicellular TJs (bTJs), which
regulates ion permeability.6 It is widely acknowledged that the
abnormal expression of tricellulin or the presence of mutants can
lead to alterations in the epithelium barrier. In tricellulin-knockout
EpH4 cells, the tTJ integrity is interrupted, leading to a porous and
dysfunctional barrier incapable of effectively preventing the
passage of macromolecules.7 In MDCK cells, the overexpression
of tricellulin decreases the paracellular permeability of

macromolecules (Mr > 4 kD).8 During the early stages of ulcerative
colitis, the IL-13-induced downregulation of tricellulin results in an
increase in macromolecule permeability across the colon epithe-
lium.9 Consistent with these findings, our previous studies
documented an increased presence of macromolecules in the
saliva of immunoglobulin-like domain-containing receptor 1−/−

(ILDR−/−) mice, accompanied by the redistribution of tricellulin in
salivary glands.10 These observations further revealed that
suppression of tricellulin leads to a heightened permeability of
40 kDa fluorescein isothiocyanate-dextran (FD40) across the
salivary gland epithelium.10 Nonetheless, the exact role of
tricellulin in saliva secretion remains to be fully elucidated.
Sjögren’s syndrome (SS), a systemic autoimmune disorder, is

characterized by lymphocytic infiltration and diminished secretory
function in exocrine glands, prominently affecting salivary and
lacrimal glands. The clinical manifestations of xerostomia (dry
mouth) and xerophthalmia (dry eyes) in SS patients considerably
compromise their quality of life.11–13 The prevailing hypothesis
posits that dysregulated innate and adaptive immunity, culminat-
ing in an escalation of pro-inflammatory cytokines, is pivotal to the
initiation and progression of SS.14–16 As a result, therapeutic
strategies targeting the modulation of the dysfunctional immune
system have emerged as effective treatments for SS.17,18
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Nevertheless, recent investigations suggest that the correlation
between lymphocytic infiltration and salivary gland dysfunction in
SS patients is less pronounced than previously presumed.19,20 This
observation underscores the importance of exploring therapies that
enhance glandular epithelial function in the context of SS manage-
ment. Moreover, the disruption of the epithelial barrier in salivary
glands has been implicated as a critical factor in SS pathogenesis. In
labial salivary glands (LSGs) obtained from SS patients, the expression
patterns and distributions of various TJ proteins, including ZO-1,
occludin, and claudin-1, -3, and -4, are altered by focal pro-
inflammatory cytokines.21 Similarly, in the submandibular glands
(SMGs) of non-obese diabetic (NOD) mice, a recognized animal model
for SS, there is an observed increase in the clearance of paracellular
tracers, a widened acinar TJ zone, and aberrant expression profiles of
multiple TJ proteins. These changes are attributed to the infiltration of
Th17 lymphocytes.21,22 However, the precise mechanisms by which
the epithelial TJ barrier contributes to SS progression require further
investigation. Furthermore, given the marked elevation of macro-
molecules, such as autoantibodies, inflammatory factors, and other
proteins, in the saliva of SS patients,23,24 the potential role of tricellulin
in mediating this pathological secretory pattern remains unexplored.
This knowledge gap highlights the necessity for additional research to
elucidate the specific contribution of tricellulin to the disrupted
salivary secretion in SS.
To investigate the expression profile of tricellulin in salivary

glands during SS, we analyzed transcriptomic datasets derived
from SS patients and healthy controls. Our analysis revealed a
consistent downregulation of tricellulin in SS, which we corrobo-
rated through immunohistochemical examination of salivary gland
tissue samples from both SS patients and NOD mice. By establish-
ing a previously unrecognized salivary gland acinar cell-specific

tricellulin conditional knockout mouse model, we assessed the
implications of tricellulin deficiency on macromolecule transport
across the salivary gland epithelium. Furthermore, we probed the
dynamics of tricellulin expression under inflammatory conditions of
SS in both mouse models and cell cultures, aiming to unravel the
complex interplay between inflammation and tricellulin regulation.

RESULTS
Expression of tricellulin is reduced in salivary glands of SS patients
To explore the role of tricellulin and other TJs in SS, we analyzed
RNA sequencing datasets (GSE173808 and GSE208260). Patient
selection adhered to the 2016 ACR-EULAR criteria and histopatho-
logical phenotyping. The biopsy-negative non-SS sicca subjects
served as the control group, while the biopsy-positive SS patients
served as the SS group. The analysis encompassed 37 parotid
gland (PG) samples (16 controls, 21 patients) and 50 LSG samples
(17 controls, 33 patients). Gene Set Enrichment Analysis (GSEA)
showed diminished activity in cell-cell junction-related pathways
and TJ expression in both PGs and LSGs from SS patients compare
to controls (Fig. 1a). Specifically, the mRNA levels of tricellulin
(MARVELD2), ZO-1 (TJP1), occludin (OCLN), ZO-3 (TJP3), claudin-3
(CLDN3), claudin-4 (CLDN4), and junctional adhesion molecule 3
(JAM3) were markedly lower in PGs and LSGs from SS patients
(Fig. 1b). The receiver operating characteristic (ROC) curve analysis
demonstrated that tricellulin, ZO-3, and JAM3 mRNA expression in
PGs had a certain diagnostic accuracy for SS (Fig. 1c). We then
assessed tricellulin expression patterns in SS biopsy specimens.
Histological staining highlighted obvious lymphocytic infiltration
in PGs and LSGs of SS patients (Supplemental Fig. 1). Immuno-
fluorescence images revealed that tricellulin was predominantly
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Fig. 1 The expression of tricellulin in salivary gland biopsies from Sjögren’s syndrome (SS) patients. a Gene Set Enrichment Analysis (GSEA)
results showing cell junction-related pathways. PG parotid gland. LSG labial salivary gland. b The differential expressions of tight junction (TJ)-
related genes. The green color-labeled gene names were presented as the downregulated TJs. The number presented was the significant
value. LSR lipolysis-stimulated lipoprotein receptor, JAM junctional adhesion molecule, CLDN claudin, TJP tight junction protein, OCLN
occludin, MARVELD2 membrane-associating domain containing 2, Tric tricellulin. c The receiver operating characteristic curve (ROC) showing
the diagnostic effects of TJ mRNA expression levels in parotid glands from SS patients. d The distribution of tricellulin in salivary glands of
control and SS patients. Arrows pointed to the localization of tricellulin. Cell nuclei were stained with DAPI (blue). Bar: 8 µm. n= 1 for PG
biopsy and n= 6 for LSG biopsies. Ctrl control, A acini
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localized at the apicolateral membranes between adjacent acini in
control salivary glands, with a notable reduction in intensity in SS
samples (Fig. 1d). These data collectively indicate a down-
regulation of tricellulin in salivary glands of SS.

Expression of tricellulin is decreased in hypofunctional SMGs of
NOD mice
Next, to elucidate alterations in tricellulin during the onset and
progression of SS, we utilized differently aged NOD mice, a well-
established animal model that recapitulates features of Sjögren’s-
like syndrome.25,26 At 7 weeks of age, no discernible histological
differences were apparent in the SMGs of NOD mice relative to
BALB/c mice. However, at 14 and 21 weeks, there was a significant
increase in both the quantity and size of lymphocytic foci in NOD
mice compared to age-matched BALB/c mice (Fig. 2a–c).
Additionally, we have performed the immunofluorescence stain-
ing of CD3 and CD4 for T cells and CD4+ T cells (Th) cells,
respectively. Results showed an obvious infiltration of CD3+ and
CD4+ T cells in the SMGs of 14-week-old NOD mice compared to
controls, and this infiltration became severer in the SMGs of 21-
week-old NOD mice (Supplemental Fig. 2a). We also analyzed the
correlation between T cell infiltration and tricellulin expression
according to public datasets (GSE173808 and GSE208260). There
was a negative correlation between tricellulin gene expression
and those of CD3D, CD3E (two important CD3 subunits), and CD4,
with Pearson correlation coefficients of −0.58, −0.55, and −0.46
respectively (Supplemental Fig. 2b), suggesting that the quantity

of T cells may negatively correlate with tricellulin expression in the
salivary glands of patients with SS. Additionally, the mRNA
expression of proinflammatory cytokines, specifically interferon-γ
(IFN-γ) and IL-6, was elevated in SMGs of 14- and 21-week-old
NOD mice, whereas the upregulation of tumor necrosis factor-α
(TNF-α) mRNA was exclusive to 21-week-old NOD mice. Interest-
ingly, the mRNA level of IL-1β remained unchanged between NOD
and BALB/c mice (Fig. 2d). The salivary flow rate was significantly
decreased in both 14- and 21-week-old NOD mice, though not in
7-week-old NOD mice (Fig. 2e). Notably, tricellulin mRNA and
protein expression were markedly reduced in the SMGs of NOD
mice across all three age groups (7, 14, and 21 weeks) when
compared to age-matched BALB/c mice (Fig. 3a, b, Supplemental
Fig. 2c). Moreover, qPCR analysis revealed dysregulated expression
of TJ components. We observed reduced occludin and elevated
claudin-1 and claudin-3 mRNA in 7-week-old NOD mice, increased
claudin-1 and decreased claudin-4 mRNA in 14-week-old NOD
mice, and decreased occludin alongside increased claudin-1,
immunoglobulin-like domain containing receptor 1 (ILDR1), and
ILDR2 mRNA in 21-week-old NOD mice, all compared to their
respective age-matched BALB/c mice (Fig. 3c). Immunofluores-
cence images further revealed a decline in tricellulin intensity at
the apicolateral membranes of acinar cells in 14- and 21-week-old
NOD mice, with a trend towards reduced tricellulin apparent even
at 7 weeks of age (Fig. 3d, Supplemental Fig. 2d).
To evaluate the potential implications of tricellulin absence in

acinar epithelial cells in NOD mice, we quantified the
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concentration of albumin (a prototypical macromolecule that
traverses via the paracellular route) in saliva. Compared to age-
matched BALB/c controls, the salivary albumin content displayed a
rising trend in 7-week-old NOD mice and a statistically significant
elevation in 14-week-old NOD mice (Fig. 3e). These observations
indicate that the downregulation of tricellulin expression is
concurrent with both hyposecretion and enhanced permeability
to macromolecules, phenomena that escalate as the disease
progresses.

Deficiency of tricellulin leads to hyposalivation and leakage of
macromolecules
To ascertain whether there exists a causal relationship between
tricellulin absence and abnormal secretory patterns, we engi-
neered salivary gland acinar cell-specific tricellulin conditional
knockout mice. This was achieved by selectively ablating the Tric
gene in salivary gland acini through the Cre-LoxP recombination
system. Genotyping of tail DNA confirmed the successful
generation of TricCKO mice (Fig. 4a, b). Notably, the mRNA
expression of tricellulin was markedly reduced in major salivary
glands, including SMGs, SLGs, and PGs (Fig. 4c). Moreover, the
mRNA level of tricellulin was also significantly diminished in the
lung tissue (Supplemental Fig. 3a), given that AQP5, a marker used
for Cre expression, is also expressed in the lung.27 Immunofluor-
escence analysis further corroborated these findings, revealing a
substantial decrease in tricellulin signals in the acinar regions of
salivary glands (Fig. 4d, Supplemental Fig. 3b). These results

confirm the establishment of a functional acinar cell-specific
tricellulin conditional knockout mouse model.
In TricCKO mice, the histological examination showed no

apparent alterations in the architecture of either the salivary
glands or lungs, indicating that the overall tissue structure
remained intact (Fig. 5a, Supplemental Fig. 3c, d). Nevertheless,
a striking expansion of TJ width between neighboring acinar cells
was evident in TricCKO mice compared to Tricflox/flox controls (Fig.
5b, c). Remarkably, TricCKO mice manifested reduced saliva
production and elevated concentrations of albumin in the saliva
(Fig. 5d, e). To further probe the impact of tricellulin deficiency on
the integrity of the acinar epithelial barrier, we conducted an in
vivo paracellular permeability assay using rhodamine B-labeled
dextran (Mr, 40 kD, termed as RD40) as a macromolecular tracer.
Following a 30-min exposure to lipopolysaccharide (LPS, adminis-
tered at 5 mg/kg body weight), a greater accumulation of
RD40 signal was observed within the acinar lumens of TricCKO

mice after pilocarpine administration, contrasting with the
response in Tricflox/flox controls (Fig. 6). These findings provide
direct evidence that the absence of tricellulin in acinar epithelial
cells triggers a decline in saliva secretion and facilitates macro-
molecular leakage in salivary glands.

Expression of tricellulin is downregulated by IFN-γ in SMG-C6 cells
IFN-γ plays a critical role as an inflammatory cytokine, inciting
dysfunction in salivary gland epithelial cells, and its levels are
prominently elevated in the salivary glands of SS patients.15,16 To
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emulate the inflammatory milieu characteristic of SS, the rat SMG
epithelial polarized cell line, SMG-C6, was exposed to IFN-γ.
Proteomics analysis was employed to screen for differential
phosphorylation profiles in SMG-C6 cells following 30min of
IFN-γ treatment versus controls. This analysis identified 229
differentially phosphorylated proteins (with a ratio of fold change
≥1.5 or ≤0.67, P < 0.05), among which 132 proteins were
upregulated and 97 were downregulated in the IFN-γ-treated
group (Fig. 7a). Gene Ontology (GO) analysis of cellular
components revealed an enrichment of proteins associated with
cell junctions and cell-cell junctions (Fig. 7b). Moreover, KEGG
pathway analysis disclosed that TJ and AJ-related proteins were
prominently featured among the top 20 pathways (Fig. 7c).
Focusing on the term “Tight junction” within the GO-enriched
categories, we identified afadin, activating protein 1, occludin,
Cdc42 effector protein 1 and 4, claudin, tight junction-associated
protein 1 (TJAP1), PAR-6 family cell polarity regulator beta
(PARD6B), ZO-1, and ZO-2 (Fig. 7d). However, tricellulin was
absent from the list of phosphorylated proteins, suggesting that
IFN-γ stimulation does not elicit rapid phosphorylation modifica-
tions of tricellulin. Subsequently, high-throughput RNA sequen-
cing was performed in SMG-C6 cells treated with or without IFN-γ
for 24 h. This analysis uncovered 635 differentially expressed
genes (with a ratio of fold change ≥ 1 or ≤ 0.5, P < 0.05), of which
426 genes were upregulated and 209 were downregulated (Fig.
8a). The downregulated genes were strongly associated with cell-
cell junction, cell-cell junction organization, cell junction organiza-
tion, adherens junction, and anchoring junction (Fig. 8b).
Validation of the sequencing results revealed that IFN-γ signifi-
cantly suppressed tricellulin mRNA and protein expression at both
24 h and 36 h post-treatment (Fig. 9a, b). Overexpression of

tricellulin partially mitigated the inhibitory effect of IFN-γ on
tricellulin protein expression (Fig. 9c). Additionally, the mRNA
levels of occludin, ZO-1, claudin-1, claudin-4, JAM-1, ILDR1, and
ILDR2 were decreased by IFN-γ stimulation at 24 h, and the
reduction persisted for claudin-1, claudin-4, JAM-1, and ILDR1 at
36 h (Fig. 9d). Immunofluorescence imaging demonstrated that
tricellulin was primarily localized as puncta at tricellular contacts in
untreated cells, whereas tricellulin was redistributed to bicellular
junctions upon IFN-γ treatment for 12 h and 24 h (Fig. 9e, f).
To explore the pivotal role of tricellulin in preserving barrier

integrity in salivary gland epithelial cells, transepithelial electrical
resistance (TER) measurement and paracellular permeability
assay, two typical assays to evaluate barrier function, were
performed in SMG-C6 cells. In our experiments with SMG-C6 cells,
IFN-γ stimulation was found to significantly reduce TER values in a
time-dependent manner (Fig. 10a), indicative of compromised
epithelial barrier function. In addition, the permeation of
fluorescein isothiocyanate (FITC)-labeled dextran (Mr, 4 and
40 kDa, termed as FD4 and FD40) and rhodamine B-labeled
dextran (Mr, 70 kD, termed as RD70) was notably higher in IFN-γ-
treated cells compared to their control cells (Fig. 10b). To
precisely delineate the route through which macromolecules
traverse, we conducted real-time monitoring of avidin-FITC flux.
Our results indicated that in control cells, avidin-FITC predomi-
nantly passed through the points of tricellular contact, a
phenomenon that was markedly exacerbated by IFN-γ stimula-
tion (Fig. 10c, Supplemental Video). These findings support the
hypothesis that the downregulation of tricellulin by IFN-γ
accelerates the passage of macromolecules, particularly via the
tricellular pathways, thus compromising the barrier integrity of
salivary gland epithelial cells.
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JAK/STAT1/miR-145 axis mediates the effect of IFN-γ on tricellulin
expression
We next sought to elucidate the potential signaling pathway
regulating tricellulin expression in salivary gland epithelial cells.
The phosphorylation of signal transducer and activator of
transcription 1 (STAT1) at Ser727 was significantly increased after
30 min and 60 min of IFN-γ treatment (Fig. 11a, Supplemental Fig.
4a). Pretreatment with ruxolitinib, a JAK/STAT1 pathway inhibitor,
effectively reversed the IFN-γ-induced downregulation of tricellu-
lin expression (Fig. 11b, Supplemental Fig. 4b). Moreover, the
increased flux of RD70 induced by IFN-γ was also attenuated by
pretreatment with ruxolitinib (Fig. 11c). Immunofluorescence
staining revealed higher intensities of phosphorylated STAT1 in

the SMGs of 14- and 21-week-old NOD mice, as well as in the PG
and LSG of SS patients (Fig. 11d). These observations imply that
IFN-γ mediates the downregulation of tricellulin by activating the
JAK/STAT1 signaling pathway. Toll-like receptors (TLRs) play
crucial roles in the innate immune system by recognizing
pathogen-associated molecular patterns derived from various
microbes. As summarized in a recent review, several TLRs,
including TLR2, TLR3, TLR4, TLR7, and TLR9, are involved in the
pathogenesis of SS by modulating inflammatory factor expres-
sion, B cell maturation, and salivary epithelial cell apoptosis.28

Accordingly, we performed qPCR to detect the changes of these
above mentioned TLRs in the SMGs of BALB/c and NOD mice.
Compared to age-matched BALB/c mice, the level of TLR9 was
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upregulated in 7-week-old NOD mice, the levels of TLR4, TLR7,
and TLR9 were significantly upregulated in 14-week-old NOD
mice, and the levels of TLR2 and TLR4 were elevated in 21-week-
old NOD mice (Supplemental Fig. 4e). The precise mechanism of
TLR receptor pathway in the occurrence of SS will be explored in
the future studies.
Many previous studies have underscored the involvement of

microRNAs (miRNAs) in the modulation of TJs. Consequently, we
endeavored to identify a specific miRNA that could regulate
tricellulin expression in salivary glands. Employing TargetScan
prediction tool to predict the miRNAs that bind to the 3’
untranslated region (UTR) of tricellulin mRNA covering human,
mouse, and rat species,29 we pinpointed miR-145-5p (referred to

as miR-145 hereafter) as a potential regulator (Fig. 12a). The
expression of miR-145 was observed to escalate in response to
24 h of IFN-γ stimulation in SMG-C6 cells, whereas this
phenomenon was abrogated by ruxolitinib pretreatment (Fig.
12b). The level of miR-145 was also found to be higher in 7-, 14-,
and 21-week-old NOD mice when compared to age-matched
BALB/c mice (Fig. 12c). Further experimentation revealed that
pretreatment with a miR-145 inhibitor attenuated the IFN-γ-
induced decline in tricellulin mRNA and protein expression (Fig.
12d, e), whereas a miR-145 mimic led to a suppression of
tricellulin protein levels (Fig. 12f). A dual-luciferase reporter
assay confirmed that miR-145 binding to the tricellulin 3’ UTR
reduced luciferase activity, an effect that was negated when the
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putative binding sites were mutated (Fig. 12g). Taken together,
these results substantiate that miR-145 acts as a direct mediator
of tricellulin expression under the influence of the IFN-γ/JAK/
STAT1 axis.

Enhancement of TJ barrier function and restorage of tricellulin
expression ameliorates hyposalivation in NOD mice
Finally, we examined whether enhancing epithelial barrier
function through the application of the TJ sealer, AT1001
(larazotide acetate), could confer therapeutic effects on treating
hyposalivation. Histological morphology analysis revealed that
the structural integrity of SMGs in 10-week-old BALB/c and NOD
mice remained unaltered regardless of AT1001 treatment (Fig.
13a, Supplemental Fig. 4f). While AT1001 did not mitigate the
extent of inflammatory infiltration, it notably restored saliva
secretion in NOD mice (Fig. 13b–e). Meanwhile, AT1001
treatment resulted in a recovery of tricellulin protein expression
in the SMGs of NOD mice, in contrast to those treated with PBS,
alongside a marked reduction in saliva albumin levels (Fig. 13f, g,
Supplemental Fig. 4g). Additionally, the abnormal expression of
other TJ components, such as claudin-1, claudin-3, ILDR1, and
ILDR2, was normalized in the SMGs of NOD mice following
AT1001 intervention (Fig. 13h). To specifically investigate the role
of tricellulin in salivation, we further administered miR-145
antagomir via intraperitoneal injection into 6-week-old NOD
mice (Fig. 14a). Although no significant improvement in
inflammation was observed in the SMGs of 10-week-old NOD
mice, miR-145 antagomir significantly alleviated hyposalivation
and restored tricellulin expression in NOD mice (Fig. 14b–f,
Supplemental Fig. 4h, i). Furthermore, the elevated albumin
levels in the saliva of NOD mice were attenuated following miR-
145 antagomir treatment (Fig. 14g). These results suggest that
targeting TJs, with a particular focus on tricellulin, is a promising
therapeutic strategy for curing hyposalivation in SS.

DISCUSSION
Currently, the understanding of hyposecretion in exocrine glands
and its underlying mechanisms remains enigmatic, presenting a
significant obstacle to the development of effective early
treatments for SS in clinical settings. Our investigation elucidates
the diminution of tricellulin in salivary gland acinar epithelial cells
as a pivotal and early event, directly contributing to hyposalivation
in SS. Mechanistically, we delineate the JAK/STAT1/miR-145
pathway as a mediator of IFN-γ-induced downregulation of
tricellulin. Furthermore, our data demonstrate that fortifying
disrupted epithelial TJs and restoring tricellulin expression can
effectively curb the progression of SS, as illustrated in the
conceptual diagram (a scheme in Fig. 15). From this perspective,
targeting tricellulin to enhance epithelial barrier function emerges
as a promising therapeutic strategy for SS.
Our study reveals a significant finding that tricellulin deficiency

is an early event in SS pathogenesis, preceding hyposalivation and
correlating with aberrant transport of macromolecules in salivary
glands. It is well-known that TJs constitute an intercellular barrier
that protects against the free transport of materials and even
cells.30 Unlike the classical bTJ components, tTJs are dominantly
expressed at the sites where three cells meet and form a “central
tube” that has a larger diameter than the bicellular route.5,6

Mutations in the tricellulin gene underlie nonsyndromic deafness
(DFNB49), a human hereditary disease, due to impaired interaction
with TJ scaffolding proteins ZO-1 to -3.31 Knockdown of occludin
or lipolysis-stimulated lipoprotein receptor (LSR) leads to the
mislocalization of tricellulin from tricellular junctions to bicellular
junctions.32,33 Our earlier work reported that tricellulin modulates
macromolecular transport and alters bTJ structure in salivary gland
epithelial cells.10 These findings underscore the critical role of
tricellulin in controlling macromolecular transport across epithelia
and suggest potential impacts on other TJs. In this study, we
observed markedly reduced tricellulin expression in salivary
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glands of SS patients. Using NOD mice as models for disease
progression, we pinpointed the loss of tricellulin as an early
phenomenon. Measuring the levels of albumin as an indicator for
macromolecular paracellular transport, we revealed heightened
albumin flux in the saliva of NOD mice concurrent with tricellulin
loss. Given the altered expression of other TJ components in SMGs
of NOD mice, we generated salivary gland acinar cell-specific
tricellulin knockout mice to directly identify the effects of
tricellulin. Compared to control Tricflox/flox mice, TricCKO mice
exhibited reduced saliva secretion, widened TJs, and increased
leakage of paracellular tracers in SMGs. Our data indicate that
tricellulin deficiency contributes to the abnormal secretory

patterns observed in SS. This finding elucidates why various large
molecules, such as β2-microglobulin, lactoferrin, soluble sialic
acid-binding immunoglobulin-like lectin-5, cytokines (e.g., IL-17,
IL-6, IL-10, and TNF-α), antibodies against muscarinic acetylcholine
receptor M3, calprotectin, C-reactive protein, and albumin, are
elevated in the saliva of SS patients relative to healthy
individuals.34–38 The potential use of these salivary biomarkers
as non-invasive diagnostic indicators for SS may derive from the
absence of tricellulin in epithelial cells.
An additional important finding from our research is the

identification of the signaling pathway that governs the expres-
sion of tricellulin in salivary glands. In SS, Th1 lymphocytes and
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their secreted cytokines, notably IFN-γ and TNF-α, predominate as
inflammatory mediators in salivary glands.39 Prior investigations
have shown that IFN-γ and/or TNF-α regulate the expression and
distribution of TJ components by affecting the myosin II-
dependent vesicles on the apical membranes and reorganizing
cytoskeleton, lead to the internalization of occludin, claudin-1, and
JAM-1 through the stimulation of Ras homologue family member
A (RhoA)/RhoA kinase, and downregulate the expression of ZO-1
and claudin-10 through NF-κB and JAK/STAT signaling, respec-
tively.40–45 In our current study, we found that stimulation with
IFN-γ significantly reduced both the mRNA and protein expression
of tricellulin in SMG-C6 cells. Furthermore, inhibiting the JAK/
STAT1 pathway effectively abrogated the IFN-γ-induced suppres-
sion of tricellulin expression and the resulting increase in
macromolecular leakage.
MiRNAs are a group of endogenous non-coding RNAs

composed of ~22 nucleotides, subtly coordinating cellular
function by binding to the 3’ UTR of target mRNAs and repressing
the expression of targeted genes.46 Previous studies have revealed
the role of miRNAs in the regulation of TJs. For example, miR-21
has been observed to be upregulated and contributes to
increased permeability in intestinal and mucosal tissues in
patients diagnosed with ulcerative colitis and Crohn’s disease.46,47

The miR-200c-mediated degradation of occludin mRNA is
implicated in the IL-1β-induced disruption of intestinal epithelial
TJs.47 High glucose conditions have been shown to decrease
paracellular permeability by inhibiting miR-22-3p/SP-1-mediated
claudin-1 and claudin-3 expressions.48 Exosomal miR-23b-3p
derived from cancer cells leads to increased vascular permeability
and a reduction in the expression of occludin, ZO-1, and claudin-1
in salivary adenoid cystic carcinoma.49 In the present study, miR-
145 was predicted to specifically target tricellulin mRNA through
TargetScan, and verified to negatively regulate tricellulin expres-
sion. The dual-luciferase reporter assay further confirmed that
miR-145 binds to the 3’ UTR region of tricellulin mRNA. Although a

previous study documented lower levels of miR-145 in LSGs from
SS patients,50 our findings revealed an elevated level of miR-145 in
SMGs of NOD mice and in SMG-C6 cells stimulated with IFN-γ. This
discrepancy could potentially be attributed to differences in
disease stage between the models utilized, and additional
research is warranted to clarify this inconsistency. Collectively,
these data suggest that IFN-γ orchestrates the downregulation of
tricellulin expression in salivary glands through a mechanism
involving the JAK/STAT1/miR-145 axis.
Ultimately, in light of the evidence elucidating the causative link

between tricellulin insufficiency and hyposalivation in SS, we
administered AT1001 to augment TJ barrier function and promote
tricellulin expression. AT1001, a synthetic peptide, has been
shown to consolidate TJs at the cellular membrane level, thereby
reinforcing barrier integrity.51 Its therapeutic potential has been
explored across numerous TJ-associated disease models, including
celiac disease, type 1 diabetes, and respiratory diseases.51–53 We
previously reported the effectiveness of AT1001 in mitigating
salivary gland fibrosis by enhancing microvascular endothelial
function. Within the scope of this study, we observed that AT1001
treatment substantially alleviated hyposecretion and reduced
macromolecular leakage in NOD mice. These findings imply that
bolstering TJ barrier function and restoring tricellulin expression
confer benefits to SMGs impaired in NOD mice. Moreover,
considering that the effect of AT1001 is not restricted to tricellulin,
we treated NOD mice with miR-145 antagomir to specifically
recover the expression of tricellulin. Results showed restoring
tricellulin expression by miR-145 antagomir significantly alleviated
hyposalivation and the leakage of macromolecules in NOD mice,
suggesting that tricellulin may serve as a promising target for the
treatment of SS.
In summary, the findings of this study highlighted the crucial

role of epithelial tricellulin in maintaining barrier function and its
dysfunction in the pathogenesis of SS. Our results demonstrated
that tricellulin expression is suppressed by IFN-γ via the JAK/
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STAT1/miR-145 signaling pathway. Moreover, we established that
the restoration of TJ integrity and the re-expression of tricellulin
are instrumental in alleviating hyposalivation. Consequently,
targeting acinar epithelial tricellulin represents a promising
therapeutic strategy for addressing hyposecretion and macro-
molecular leakage in SS.

MATERIALS AND METHODS
Reagents and antibodies
Pilocarpine, tamoxifen, fluorescein isothiocyanate (FITC)-labeled
dextran (Mr, 4 and 40 kDa), rhodamine B-labeled dextran (Mr, 40
and 70 kDa), EZ-link NHS-LC-LC-Biotin, avidin-FITC (Mr, 68 kDa), IFN-γ,
and cell culture constituents were purchased from Sigma-Aldrich.
Ruxolitinib, rhodamine B labeled phalloidin and larazotide acetate
(also known as AT1001) were purchased from MedChemExpress.
Antibodies against tricellulin, CD3, and CD4 were from Invitrogen
and Proteintech. Antibodies against phospho-STAT1 (p-STAT1) and
total STAT1 (t-STAT1) were from Cell Signaling Technology.
Antibodies against occludin and claudin-4 were from Invitrogen.

Public datasets and bioinformatics analysis
The gene expression matrices of GSE173808 and GSE208260
datasets were obtained from the Gene Expression Omnibus (GEO)

(www.ncbi.nlm.nih.gov/geo/). Differentially expressed genes were
analyzed with “voom” method of limma R package (version
3.56.2). Genes with adjust.P.value < 0.05 and | log2 Fold Change| ≥
1.0 were regarded as significant change. The expression changes
of TJ genes were visualized using a dot plot generated with the
ggplot2 R package (version 3.4.2).
GSEA analysis was performed using the ClusterProfiler R package

(version 4.8.2). The ontology gene set (c5.all.v7.0) from the
Molecular Signatures Database (MSigDB) was used for annotation.
Terms associated with TJs were extracted, and those with an
adjust.P.value < 0.05 were considered significantly enriched.

Human salivary gland tissue collection
Our study exclusively examined female patients because middle-
aged and elderly women are the most commonly affected group
with SS. LSG biopsies were obtained from 6 female patients with
SS and one PG biopsy was obtained from another female patient
with SS. LSGs and PGs from patients who underwent mucocele
resection and were confirmed to be histologically normal were
used as controls. The relevant information for the SS patients is
listed in the Supplemental Table 1. The research protocol was
approved by the Peking University Institutional Review Board
(PKUSSIRB-201631139), and all patients signed an informed
consent document prior to tissue collection.
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Animal models and saliva collection
Our study examined female NOD mice because female mice have a
higher prevalence of spontaneous inflammation of the salivary
glands and are more prone to dry mouth compared to male mice.
Seven-, 14-, and 21-week-old female NOD mice and age-matched
BALB/c mice (as control groups) were purchased from Gempharma-
tech Cooperation, and only NOD mice with blood glucose ≤ 250mg/
dL were included in the experiments. After anesthesia, whole saliva
was collected for 10min from oral cavity following pilocarpine
stimulation (10 µg/g body weight, i.p.). All experimental procedures
were approved by the Ethics Committee of Animal Research, Peking
University Health Science Center (LA2019220), and complied with
the Guide for the Care and Use of Laboratory Animals (NIH
Publication No. 85-23, revised 1996).
To explore the role of tricellulin in saliva secretion, the salivary

gland acinar cell-specific tricellulin conditional knockout mice
were generated by intercrossing Tricflox/flox mice with Aqp5-CreERT2

mice as previously described.54 Genotyping was performed using
tail samples from mice at 2-3 weeks of age. Six- to 7-week-old
male Tricflox/flox; Aqp5-CreERT2 (referred to as TricCKO) mice and their
littermate Tricflox/flox mice were intraperitoneally injected with
tamoxifen (75 mg/kg body weight, Sigma-Aldrich) for seven days,
and the experiments were performed after a two-week waiting
period. To further explore the function of TJs in saliva secretion,
AT1001,51 which is a first-in-class TJ sealer, was intraperitoneally
injected into 8-week-old female NOD and BALB/c mice for two
weeks. To gain further insights into the regulation of tricellulin, we
administered miR-145 antagomir (100 nmol per mouse, RiboBio)
via intraperitoneal injection to 6-week-old NOD mice twice a week
for a period of four weeks.

Histological and immunofluorescence staining
Paraffin or frozen sections of SMGs were stained with
hematoxylin and eosin (H&E), and morphological changes were

observed under a light microscope. SMG tissue sections (7 µm)
were fixed in cold paraformaldehyde, blocked with 3% bovine
serum albumin, stained with primary antibodies at 4 °C over-
night, and then incubated with Alexa 594- or Alexa 488-
conjugated secondary antibodies at 37 °C for 2 h. Nuclei were
stained with 4’, 6-diamidino-2-phenylindole (DAPI). Fluores-
cence images were captured using a confocal microscope (Leica
Stellaris 8).

qPCR
Following the isolation of total RNA, cDNA was synthesized using
HiScript III 1st Strand cDNA Synthesis Kit (Vazyme). The primers are
shown in the Supplemental Table 2. qPCR was performed using a
Thermo PikoReal PCR System (ThermoFisher Scientific). The level
of miRNA was examined using miDETECT A Track miRNA qPCR
Starter Kit (RiboBio).

Western blot
The samples were homogenized in RIPA buffer (Thermo Fisher
Scientific) and sonicated for 21 s (3 s on and 3 s off), and then
centrifuged at 12 000 × g for 10 min at 4 °C. The supernatant was
collected, and the protein concentration was determined by the
Bradford method (Solarbio). Equal amounts of proteins
(20–40 µg) were separated on a 10% SDS-PAGE gel at a constant
voltage 120 V for approximately 1.5 h and transferred onto a
polyvinylidene difluoride membrane at a constant current of
200 mA for 2–3 h. The membranes were blocked with 5% non-
fat milk for 2 h at room temperature, probed with primary
antibodies at 4 °C overnight, and incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies for 2 h at
room temperature. Immunoreactive bands were visualized using
enhanced chemiluminescence (Biodragon), and their densities
were quantified using Image J software (National Institutes of
Health).
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ELISA
The level of albumin in the saliva harvested from mice was
measured by ELISA according to the manufacturer’s protocol
(Abcam). An intraperitoneal injection of pilocarpine (10 μg/g body
weight) was administered into mice to stimulate saliva secretion
and saliva samples were collected for 10 min. Subsequently,
primary saliva samples were centrifuged at 800 × g for 10 min and
then diluted 4 000-fold using Diluent N to achieve an appropriate
dilution. The whole assay was performed at room temperature
(20–25 °C).

Transmission electron microscopy
The freshly harvested mouse SMG tissues were cut into 1 mm3 and
fixed in precooled 2.5% glutaraldehyde. Ultrathin sections were
stained with uranyl acetate and lead citrate and then observed
using a transmission electron microscope (Hitachi). The distances
between neighboring TJs were measured using Image J software
(National Institutes of Health).

Cell culture
Rat SMG epithelial polarized cell line SMG-C6, gifted by Prof. David
O. Quissell, was cultured at 37 °C in a 5% CO2 incubator using the
same cell medium as previously reported.10 The human

embryonic kidney cell line 293 T was purchased from the
American Type Culture Collection (ATCC CRL-3216) and cultured
in DMEM supplemented with 10% fetal bovine serum.

Proteomics analysis
The proteins of three SMG-C6 cell samples after IFN-γ (final
concentration, 50 ng/mL) treatment for 30min and three controls
were collected. The protein concentration was determined using a
suitable assay. The proteins were subjected to capillary
electrophoresis-mass spectrometry (CE-MS), protease digestion,
and phosphorylation peptide enrichment. The digested peptides
were then analyzed by liquid chromatography-tandem mass
spectrometry (LC–MS/MS). The MaxQuant software was used to
process the obtained RAW files from the mass spectrometry data.
The data were searched against the UniProt rat database
(uniprot_rat_36135_20200211.fasta) to identify proteins and phos-
phorylation sites. Statistical analysis was performed to identify
differentially phosphorylated sites. Bioinformatic analysis was
conducted to investigate the functions and pathways involved.

RNA sequencing
Four SMG-C6 cell samples treated with IFN-γ treatment for 24 h
and four control samples were used for RNA-seq experiments,

IC

BALB/c NOD
a

0

2

4

6

8

10

NOD

NOD +
 A

T10
01

IC

Tricellulin

�-actin

64 kD

0

1

2

3

4

5

A
lb

um
in

 in
 s

al
iv

a/
(m

g/
m

L)

**

0

0.5

1.0

1.5
*

BALB
/c

NOD

BALB
/c 

+ 
AT10

01

NOD +
 A

T10
01

1

BALB
/c 

+ 
AT10

01

NOD +
 A

T10
01

NOD +
 A

T10
01

Ocln

Tjp1

Cldn1

Cldn3

F11r

Lsr

Ildr2

lldr1

Cldn4

b c d

e f g

h

AT1001
(i.p., once a day)

Tissues harvest
saliva collection

8 weeks 10 weeks

BALB/c
+ AT1001

NOD
+ AT1001

N
um

be
r 

of
 ly

m
ph

oi
d

in
fil

tr
at

es

NOD

NOD +
 A

T10
01

R
el

at
iv

e 
sa

liv
a 

se
cr

et
io

n
(f

ol
d 

of
 c

ha
ng

e)

NOD

NOD +
 A

T10
01

42 kD

NOD

BALB
/c

NOD

*

*

*

**

*

*

*

**

R
el

at
iv

e 
m

R
N

A
 le

ve
l

0

2

4

6

8

10

**

**

A
re

a 
of

 s
in

gl
e 

ly
m

ph
oi

d
in

fil
tr

at
e 

fo
cu

s/
m

m
2

Fig. 13 The regulation of hyposalivation by sealing tight junction in non-obese diabetic (NOD) mice. a Schematic representation of
experimental design in NOD mice. Intraperitoneal injections of tight junction sealer AT1001 were administered into 8-week-old NOD mice
once a day for two weeks. b Hematoxylin and eosin (H&E) staining of SMGs from NOD mice with or without AT1001 treatment. The enlarged
images (bar: 50 µm) were derived from boxes in the upper panels (bar: 200 µm). IC infiltrating cells. c, d The number of lymphocytic focus (c)
and the size of single infiltrate center (d) according to (c). n= 8–10. e The stimulated saliva secretion of NOD mice with or without AT1001
treatment. n= 4–5. f The influence of AT1001 on the expression of tricellulin in SMGs of NOD mice. g The level of albumin in NOD mice with or
without AT1001 treatment. n= 6–7. h The mRNA expressions of tight junction proteins of SMGs in NOD mice with or without AT1001
treatment. n= 5–6. Analysis was performed by using unpaired two-tailed t test (c–e), Mann-Whitney’s test (g) and Kruskal-Wallis’ test
(h compared to NOD group) where *P < 0.05 and **P < 0.01. The data are presented as means ± SEM (c–e, g) and means (h)

Loss of tricellular tight junction tricellulin leads to hyposalivation in. . .
Mao et al.

13

International Journal of Oral Science           (2025) 17:22 



which were performed by Novogene. Differential gene expression
analysis was conducted using the the DESeq2 software (version
1.20.0) for samples with biological replicates. Genes with an
adjust.P.value ˂ 0.05 were considered differentially expressed. For
samples without biological replicates, the edgeR method was
used, with the corrected P value and | log2 Fold Change | as
thresholds for significant differential expression. Statistical enrich-
ment of differentially expressed genes in KEGG pathways was
analyzed using the ClusterProfiler (version 3.4.4) software.

Transepithelial electrical resistance (TER) measurement
SMG-C6 cells were seeded at a low density (2 × 104 cells per cm2)
in Costar 24-well Transwell chambers (filter pore size: 0.4 µm, filter
area: 0.33 cm2). Cells were grown to form a confluent monolayer,
and then TER was measured at 37 °C using an epithelial Volt/Ohm
meter (EVOM2, World Precision Instruments). The TER value
reached a plateau when TJ barrier integrity was well established
among cells, indicating maximal values and readiness for further
experiments.

Paracellular permeability assay
For the in vitro permeability assay, FD4, FD40 or RD70 (1 g/L)
was added into the lower chamber once a confluent monolayer
was formed, and incubated for 2 h. The apical solution was
collected, and fluorescent intensity was determined using an
EnSpire Multilabel Plate Reader (PerkinElmer). The apparent
permeability coefficient (Papp) was calculated based on the
increase in tracer amount per unit time and per filter area.10 To
visualize the flux of macromolecules across monolayers, SMG-C6

cells were seeded onto 6-well plates or confocal dishes pre-
coated with biotinylated-gelatin.55 For the cells seeds in 6-well
plates, avidin-FITC (final concentration, 25 µg/mL) was added to
the medium and incubated for 3 and 6 min. The tracer solution
was removed, and the wells were washed with PBS before fixed
with 4% paraformaldehyde for 15 min. The cells were then
incubated with Alexa Fluor 594 conjugated claudin-4 antibody
for 2 h at room temperature. For the cells seeded in confocal
dishes, the nucleus and cell membrane were stained before the
addition of avidin-FITC. The flux of avidin-FITC was observed in
real-time in living cells using a confocal microscope (Leica
Stellaris 8).
For the in vivo permeability assay, mice were treated with

lipopolysaccharide (LPS, 5 mg/kg body weight) for 30 min. RD40
(0.5 mg/g body weight) was then injected into the angular vein.
The lateral SMG was separated and placed in a glass chamber
under a 2-photon laser-scanning microscope (Leica TCS-SP8 DIVE)
following the previously described protocol.56

Oligonucleotide transfection
MiR-145 mimics, inhibitors, and negative control oligonucleotides
(each at 20 μmol/L) were designed and synthesized by RiboBio.
Oligonucleotide transfection was performed by using riboFECT CP
Transfection Kit (RiboBio). SMG-C6 cells were seeded in 12-well
plates and incubated until they reached 40%-80% confluence
before transfection. First, the transfection complexes were
prepared and incubated at room temperature for 10min. Then,
the transfection complexes were slowly added to complete
medium (without double antibodies) and subsequently added to
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each well containing cells. After 24 h of transfection, SMG-C6 cells
were stimulated with IFN-γ for 24 h for subsequent experiments.

Dual-luciferase reporter assay
Wide type (WT) and mutant (MUT) tricellulim-3’ UTR sequences
were designed, synthesized, and inserted into the luciferase
reporter vector pmirGLO (HanBio). 293 T cells was co-transfected
with a mixture of firefly and Renilla luciferase reporters and the
miR-145 mimic. Cells were incubated for 24 h, and the relative
luciferase activity was determined using a dual-luciferase reporter
assay kit (Promega) according to the manufacturer’s protocols.
Firefly luciferase activity was first detected by adding Luciferase
Assay Reagent II to the sample, producing a light signal that lasted
for at least 1 min. After quantifying the fluorescence intensity of
firefly luciferase, the reaction was terminated by adding Stop &
Glo® Reagent to the same sample, initiating the Renilla luciferase
reaction. The fluorescence intensity of the same sample was then
quantified again.

Statistical analysis
Data are presented as means ± SEM or medians using GraphPad
Prism software. Normality was tested before analysis. Student’s t
test, one- or two-way ANOVA followed by Dunnett’s, Turker’s or
Holm-Šídák’s test for multiple comparisons were used, where
P < 0.05 was considered significant. Mann-Whitney’s or Kruskal-
Wallis’ tests were used for nonparametric data.
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